Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(1): 280-291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268876

RESUMO

Yams (Dioscorea species) are an important food resource in Madagascar, where both cultivated winged yam (D. alata) and wild edible yams are consumed. However, there is limited knowledge on the nutrient composition of wild edible yams in Madagascar, and on how they compare with the cultivated winged yam. Therefore, in this study, nine wild edible yam species, one with two subspecies from Madagascar (D. bako, D. buckleyana, D. irodensis, D. maciba, D. orangeana, D. pteropoda, D. sambiranensis subsp. bardotiae and subsp. sambiranensis, D. seriflora, and Dioscorea species Ovy valiha), were analyzed for their nutrient composition, compared with cultivated D. alata. They include 6/6 of the most favored wild edible yam species in Madagascar. New nutrient composition data (protein, carbohydrate/starch, energy, lipid, ß-carotene, and minerals) are presented for these nine wild edible yam species. The results show that they contain comparable levels of lipids and starch to D. alata, but none are better sources of protein than D. alata. The results show that D. irodensis contains a significantly higher ß-carotene content when compared to all other edible yams analyzed, and that D. buckleyana, D. irodensis, and D. sambiranensis subsp. bardotiae have a higher calcium content than cultivated D. alata, while all nine wild edible yam species analyzed contain a higher iron content, compared to cultivated D. alata. The nutrient composition data presented could provide new incentives to conserve wild edible yams and inform on strategies to select Dioscorea species for sustainable cultivation and use, providing opportunities to enhance future food security in Madagascar.

2.
Mol Ecol ; 32(15): 4165-4180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37264989

RESUMO

Clonal propagation enables favourable crop genotypes to be rapidly selected and multiplied. However, the absence of sexual propagation can lead to low genetic diversity and accumulation of deleterious mutations, which may eventually render crops less resilient to pathogens or environmental change. To better understand this trade-off, we characterize the domestication and contemporary genetic diversity of Enset (Ensete ventricosum), an indigenous African relative of bananas (Musa) and a principal starch staple for 20 million Ethiopians. Wild enset reproduction occurs strictly by sexual outcrossing, but for cultivation, it is propagated clonally and associated with diversification and specialization into hundreds of named landraces. We applied tGBS sequencing to generate genome-wide genotypes for 192 accessions from across enset's cultivated distribution, and surveyed 1340 farmers on enset agronomic traits. Overall, reduced heterozygosity in the domesticated lineage was consistent with a domestication bottleneck that retained 37% of wild diversity. However, an excess of putatively deleterious missense mutations at low frequency present as heterozygotes suggested an accumulation of mutational load in clonal domesticated lineages. Our evidence indicates that the major domesticated lineages initially arose through historic sexual recombination associated with a domestication bottleneck, followed by the amplification of favourable genotypes through an extended period of clonal propagation. Among domesticated lineages, we found a significant phylogenetic signal for multiple farmer-identified food, nutrition and disease resistance traits and little evidence of contemporary recombination. The development of future-climate adapted genotypes may require crop breeding, but outcrossing risks exposing deleterious alleles as homozygotes. This trade-off may partly explain the ubiquity and persistence of clonal propagation over recent centuries of comparative climate stability.


Assuntos
Domesticação , Melhoramento Vegetal , Agricultura , Variação Genética , Fenótipo , Filogenia
3.
Methods Mol Biol ; 2672: 115-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335471

RESUMO

Whole genome duplications (WGD) are frequent in many plant lineages; however, ploidy level variation is unknown in most species. The most widely used methods to estimate ploidy levels in plants are chromosome counts, which require living specimens, and flow cytometry estimates, which necessitate living or relatively recently collected samples. Newly described bioinformatic methods have been developed to estimate ploidy levels using high-throughput sequencing data, and these have been optimized in plants by calculating allelic ratio values from target capture data. This method relies on the maintenance of allelic ratios from the genome to the sequence data. For example, diploid organisms will generate allelic data in a 1:1 proportion, with an increasing number of possible allelic ratio combinations occurring in individuals with higher ploidy levels. In this chapter, we explain step-by-step this bioinformatic approach for the estimation of ploidy level.


Assuntos
Genoma , Ploidias , Humanos , Biologia Computacional , Poliploidia
4.
Sci Data ; 10(1): 327, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236921

RESUMO

The Checklist of the Vascular Plants of the Republic of Guinea (CVPRG) is a specimen-based, expert-validated knowledge product, which provides a concise synthesis and overview of current knowledge on 3901 vascular plant species documented from Guinea (Conakry), West Africa, including their accepted names and synonyms, as well as their distribution and status within Guinea (indigenous or introduced, endemic or not). The CVPRG is generated automatically from the Guinea Collections Database and the Guinea Names Backbone Database, both developed and maintained at the Royal Botanic Gardens, Kew, in collaboration with the staff of the National Herbarium of Guinea. A total of 3505 indigenous vascular plant species are reported of which 3328 are flowering plants (angiosperms); this represents a 26% increase in known indigenous angiosperms since the last floristic overview. Intended as a reference for scientists documenting the diversity and distribution of the Guinea flora, the CVPRG will also inform those seeking to safeguard the rich plant diversity of Guinea and the societal, ecological and economic benefits accruing from these biological resources.


Assuntos
Magnoliopsida , Traqueófitas , Guiné , Plantas
5.
Ann Bot ; 131(4): 635-654, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36681900

RESUMO

BACKGROUND AND AIMS: Among the numerous pantropical species of the yam genus, Dioscorea, only a small group occurs in the Mediterranean basin, including two narrow Pyrenean endemics (Borderea clade) and two Mediterranean-wide species (D. communis and D. orientalis, Tamus clade). However, several currently unrecognized species and infraspecific taxa have been described in the Tamus clade due to significant morphological variation associated with D. communis. Our overarching aim was to investigate taxon delimitation in the Tamus clade using an integrative approach combining phylogenomic, spatial and morphological data. METHODS: We analysed 76 herbarium samples using Hyb-Seq genomic capture to sequence 260 low-copy nuclear genes and plastomes, together with morphometric and environmental modelling approaches. KEY RESULTS: Phylogenomic reconstructions confirmed that the two previously accepted species of the Tamus clade, D. communis and D. orientalis, are monophyletic and form sister clades. Three subclades showing distinctive geographic patterns were identified within D. communis. These subclades were also identifiable from morphometric and climatic data, and introgression patterns were inferred between subclades in the eastern part of the distribution of D. communis. CONCLUSIONS: We propose a taxonomy that maintains D. orientalis, endemic to the eastern Mediterranean region, and splits D. communis sensu lato into three species: D. edulis, endemic to Macaronesia (Canary Islands and Madeira); D. cretica, endemic to the eastern Mediterranean region; and D. communis sensu stricto, widespread across western and central Europe. Introgression inferred between D. communis s.s. and D. cretica is likely to be explained by their relatively recent speciation at the end of the Miocene, disjunct isolation in eastern and western Mediterranean glacial refugia and a subsequent westward recolonization of D. communis s.s. Our study shows that the use of integrated genomic, spatial and morphological approaches allows a more robust definition of species boundaries and the identification of species that previous systematic studies failed to uncover.


Assuntos
Dioscorea , Dioscoreaceae , Tamus , Dioscorea/genética , Filogenia , Genômica , Filogeografia
6.
mBio ; 13(5): e0103322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040028

RESUMO

Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis. IMPORTANCE Hereditary symbioses with bacteria are common in the animal kingdom, but relatively unexplored in plants. Several plant species form associations with bacteria in their leaves, which is called leaf symbiosis. These associations are highly specific, but the mechanisms responsible for symbiont transmission are poorly understood. Using the association between the yam species Dioscorea sansibarensis and Orrella dioscoreae as a model leaf symbiosis, we show that bacteria are distributed to specific leaf structures via association with shoot meristems. Flagellar motility is required for initial infection but does not contribute to spread within host tissue. We also provide evidence that bacterial subpopulations at the meristem or in the symbiotic leaf gland differentially express key symbiotic genes. We argue that this separation of functional symbiont populations, coupled with tight control over bacterial infection and transmission, explain the evolutionary robustness of leaf symbiosis. These findings may provide insights into how plants may recruit and maintain beneficial symbionts at the leaf surface.


Assuntos
Alcaligenaceae , Simbiose , Animais , Simbiose/fisiologia , Folhas de Planta/microbiologia , Bactérias , Plantas
7.
Curr Biol ; 31(12): 2666-2673.e4, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33852872

RESUMO

Leaves of the wild yam species Dioscorea sansibarensis display prominent forerunner or "drip" tips filled with extracellular bacteria of the species Orrella dioscoreae.1 This species of yam is native to Madagascar and tropical Africa and reproduces mainly asexually through aerial bulbils and underground tubers, which also contain a small population of O. dioscoreae.2,3 Despite apparent vertical transmission, the genome of O. dioscoreae does not show any of the hallmarks of genome erosion often found in hereditary symbionts (e.g., small genome size and accumulation of pseudogenes).4-6 We investigated here the range and distribution of leaf symbiosis between D. sansibarensis and O. dioscoreae using preserved leaf samples from herbarium collections that were originally collected from various locations in Africa. We recovered DNA from the extracellular symbiont in all samples, showing that the symbiosis is widespread throughout continental Africa and Madagascar. Despite the degraded nature of this DNA, we constructed 17 symbiont genomes using de novo methods without relying on a reference. Phylogenetic and genomic analyses revealed that horizontal transmission of symbionts and horizontal gene transfer have shaped the evolution of the symbiont. These mechanisms could help explain lack of signs of reductive genome evolution despite an obligate host-associated lifestyle. Furthermore, phylogenetic analysis of D. sansibarensis based on plastid genomes revealed a strong geographical clustering of samples and provided evidence that the symbiosis originated at least 13 mya, earlier than previously estimated.3.


Assuntos
Dioscorea , Simbiose , Dioscorea/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Filogenia , Folhas de Planta
8.
Front Plant Sci ; 12: 756182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069618

RESUMO

Enset (Ensete ventricosum) is a multipurpose crop extensively cultivated in southern and southwestern Ethiopia for human food, animal feed, and fiber. It has immense contributions to the food security and rural livelihoods of 20 million people. Several distinct enset landraces are cultivated for their uses in traditional medicine. These landraces are vulnerable to various human-related activities and environmental constraints. The genetic diversity among the landraces is not verified to plan conservation strategy. Moreover, it is currently unknown whether medicinal landraces are genetically differentiated from other landraces. Here, we characterize the genetic diversity of medicinal enset landraces to support effective conservation and utilization of their diversity. We evaluated the genetic diversity of 51 enset landraces, of which 38 have reported medicinal value. A total of 38 alleles across the 15 simple sequence repeat (SSR) loci and a moderate level of genetic diversity (He = 0.47) were detected. Analysis of molecular variation (AMOVA) revealed that only 2.4% of the total genetic variation was contributed by variation among the medicinal and non-medicinal groups of landraces, with an FST of 0.024. A neighbor-joining tree showed four separate clusters with no correlation to the use-values of the landraces. Except for two, all "medicinal" landraces with distinct vernacular names were found to be genetically different, showing that vernacular names are a good indicator of genetic distinctiveness in these specific groups of landraces. The discriminant analysis of the principal components also confirmed the absence of distinct clustering between the two groups. We found that enset landraces were clustered irrespective of their use-value, showing no evidence for genetic differentiation between the enset grown for 'medicinal' uses and non-medicinal landraces. This suggests that enset medicinal properties may be restricted to a more limited number of genotypes, might have resulted from the interaction of genotype with the environment or management practice, or partly misreported. The study provides baseline information that promotes further investigations in exploiting the medicinal value of these specific landraces.

9.
Food Res Int ; 137: 109636, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233215

RESUMO

Enset (Ensete ventricosum) is a major starch staple and food security crop for 20 million people. Despite substantial diversity in morphology, genetics, agronomy and utilization across its range, nutritional characteristics have only been reported in relatively few landraces. Here, we survey nutritional composition in 22 landraces from three enset growing regions. We present mineral characterization of enset corm tissue, free amino acid characterization of raw and processed (fermented) tissues and genomic analysis of the microbial community associated with fermentation. We show that compared to regionally important tubers and cereals, enset is high in calcium, iron, potassium and zinc and low in sodium. We report changes in free amino acid composition due to processing, and establish that the bacteria genera Acetobacter, Lactobacillus and Bifidobacterium, predominate during fermentation. Nutritional and microbial variation presents opportunities to select for improved composition, quality and safety with potentially significant impacts in food security and public health.


Assuntos
Microbiota , Musaceae , Fermentação , Genômica , Humanos , Micronutrientes
10.
Sci Rep ; 10(1): 15312, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943659

RESUMO

Ensete ventricosum (Musaceae, enset) is an Ethiopian food security crop. To realize the potential of enset for rural livelihoods, further knowledge of enset diversity, genetics and genomics is required to support breeding programs and conservation. This study was conducted to explore the enset genome to develop molecular markers, genomics resources, and characterize enset landraces while giving insight into the organization of the genome. We identified 233 microsatellites (simple sequence repeats, SSRs) per Mbp in the enset genome, representing 0.28% of the genome. Mono- and di-nucleotide repeats motifs were found in a higher proportion than other classes of SSR-motifs. In total, 154,586 non-redundant enset microsatellite markers (EMM) were identified and 40 selected for primer development. Marker validation by PCR and low-cost agarose gel electrophoresis revealed that 92.5% were polymorphic, showing a high PIC (Polymorphism Information Content; 0.87) and expected heterozygosity (He = 0.79-0.82). In silico analysis of genomes of closely related species showed 46.86% of the markers were transferable among enset species and 1.90% were transferable to Musa. The SSRs are robust (with basic PCR methods and agarose gel electrophoresis), informative, and applicable in measuring enset diversity, genotyping, selection and potentially breeding. Enset SSRs are available in a web-based database at https://enset-project.org/EnMom@base.html (or https://enset.aau.edu.et/index.html , downloadable from Figshare).


Assuntos
Biomarcadores/metabolismo , Genoma de Planta/genética , Repetições de Microssatélites/genética , Musaceae/genética , Genômica/métodos , Internet , Polimorfismo Genético/genética
11.
Front Plant Sci ; 10: 937, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396248

RESUMO

Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam (Dioscorea) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy (Dioscorea alata, D. communis, and D. sylvatica). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea. We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.

12.
Ecol Evol ; 9(12): 6833-6848, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380019

RESUMO

Forest undergrowth plants are tightly connected with the shady and humid conditions that occur under the canopy of tropical forests. However, projected climatic changes, such as decreasing precipitation and increasing temperature, negatively affect understory environments by promoting light-demanding and drought-tolerant species. Therefore, we aimed to quantify the influence of climate change on the spatial distribution of three selected forest undergrowth plants, Dracaena Vand. ex L. species, D. afromontana Mildbr., D. camerooniana Baker, and D. surculosa Lindl., simultaneously creating the most comprehensive location database for these species to date. A total of 1,223 herbarium records originating from tropical Africa and derived from 93 herbarium collections worldwide have been gathered, validated, and entered into a database. Species-specific Maxent species distribution models (SDMs) based on 11 bioclimatic variables from the WorldClim database were developed for the species. HadGEM2-ES projections of bioclimatic variables in two contrasting representative concentration pathways (RCPs), RCP2.6 and RCP8.5, were used to quantify the changes in future potential species distribution. D. afromontana is mostly sensitive to temperature in the wettest month, and its potential geographical range is predicted to decrease (up to -63.7% at RCP8.5). Optimum conditions for D. camerooniana are low diurnal temperature range (6-8°C) and precipitation in the wettest season exceeding 750 mm. The extent of this species will also decrease, but not as drastically as that of D. afromontana. D. surculosa prefers high precipitation in the coldest months. Its potential habitat area is predicted to increase in the future and to expand toward the east. This study developed SDMs and estimated current and future (year 2050) potential distributions of the forest undergrowth Dracaena species. D. afromontana, naturally associated with mountainous plant communities, was the most sensitive to predicted climate warming. In contrast, D. surculosa was predicted to extend its geographical range, regardless of the climate change scenario.

13.
Appl Plant Sci ; 7(6): e11254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236313

RESUMO

PREMISE: We developed a target enrichment panel for phylogenomic studies of Dioscorea, an economically important genus with incompletely resolved relationships. METHODS: Our bait panel comprises 260 low- to single-copy nuclear genes targeted to work in Dioscorea, assessed here using a preliminary taxon sampling that includes both distantly and closely related taxa, including several yam crops and potential crop wild relatives. We applied coalescent-based and maximum likelihood phylogenomic inference approaches to the pilot taxon set, incorporating new and published transcriptome data from additional species. RESULTS: The custom panel retrieved ~94% of targets and >80% of full gene length from 88% and 68% of samples, respectively. It has minimal gene overlap with existing panels designed for angiosperm-wide studies and generally recovers longer and more variable targets. Pilot phylogenomic analyses consistently resolve most deep and recent relationships with strong support across analyses and point to revised relationships between the crop species D. alata and candidate crop wild relatives. DISCUSSION: Our customized panel reliably retrieves targeted loci from Dioscorea, is informative for resolving relationships in denser samplings, and is suitable for refining our understanding of the independent origins of cultivated yam species; the panel likely has broader promise for phylogenomic studies across Dioscoreales.

14.
Ann Bot ; 123(5): 747-766, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30715125

RESUMO

BACKGROUND: Enset (Ensete ventricosum, Musaceae) is an African crop that currently provides the staple food for approx. 20 million Ethiopians. Whilst wild enset grows over much of East and Southern Africa and the genus extends across Asia to China, it has only ever been domesticated in the Ethiopian Highlands. Here, smallholder farmers cultivate hundreds of landraces across diverse climatic and agroecological systems. SCOPE: Enset has several important food security traits. It grows over a relatively wide range of conditions, is somewhat drought-tolerant, and can be harvested at any time of the year, over several years. It provides an important dietary starch source, as well as fibres, medicines, animal fodder, roofing and packaging. It stabilizes soils and microclimates and has significant cultural importance. In contrast to the other cultivated species in the family Musaceae (banana), enset has received relatively little research attention. Here, we review and critically evaluate existing research, outline available genomic and germplasm resources, aspects of pathology, and explore avenues for crop development. CONCLUSION: Enset is an underexploited starch crop with significant potential in Ethiopia and beyond. Research is lacking in several key areas: empirical studies on the efficacy of current agronomic practices, the genetic diversity of landraces, approaches to systematic breeding, characterization of existing and emerging diseases, adaptability to new ranges and land-use change, the projected impact of climate change, conservation of crop wild relatives, by-products or co-products or non-starch uses, and the enset microbiome. We also highlight the limited availability of enset germplasm in living collections and seedbanks, and the lack of knowledge of reproductive and germination biology needed to underpin future breeding. By reviewing the current state of the art in enset research and identifying gaps and opportunities, we hope to catalyse the development and sustainable exploitation of this neglected starch crop.


Assuntos
Musaceae , Amido , Ásia , China , Etiópia
15.
BMC Evol Biol ; 16(1): 238, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821045

RESUMO

BACKGROUND: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or "elephant's foot" structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. RESULTS: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet. CONCLUSIONS: Diversification out of forest is associated with major shifts in morphology of the perennial tuber (specifically an increase in size and orientation which presumably led them to become pachycaul) and rotation of stem (from twining to non-twining). The iconic elephant's foot morphology, observed in grasslands and thicket biomes, where its corky bark may offer protection against fire and herbivory, evolved since mid Miocene. A shift in pollination trait is observed within the forest, but entry into open habitat does not show association with reproductive morphology, except in the seed wing, which has switched from winged all round the seed margin to just at the base or at the apex of it, or has been even replaced by an elaiosome.


Assuntos
Dioscorea/anatomia & histologia , Dioscoreaceae/anatomia & histologia , Ecossistema , Folhas de Planta/anatomia & histologia , África , Animais , Clima , Dioscorea/classificação , Dioscorea/fisiologia , Dioscoreaceae/classificação , Dioscoreaceae/fisiologia , Filogenia
16.
Sci Rep ; 6: 29136, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385275

RESUMO

Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds.


Assuntos
Biodiversidade , Dioscorea/metabolismo , Metabolômica/métodos , Compostos Fitoquímicos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Metaboloma , Filogenia , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Ácido Chiquímico/metabolismo , Especificidade da Espécie
17.
PhytoKeys ; (48): 51-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25931973

RESUMO

The Dioscoreabuchananii complex is shown to comprise three species, one of which is divided into two subspecies, based on morphological data. Two species, Dioscorearupicola Kunth and Dioscoreamultiloba Kunth, are endemic or subendemic to South Africa and of widespread occurrence in KwaZulu Natal. They differ markedly from each other in inflorescence and floral morphology and appear to be ecologically differentiated. The third species, Dioscoreabuchananii Benth., is primarily found in southeastern tropical Africa, but a small number of specimens collected in South Africa in the late 19(th) and early 20(th) centuries are placed in an endemic subspecies, Dioscoreabuchananiisubsp.undatiloba (Baker) Wilkin. The latter taxon is a high priority in terms of rediscovery and conservation. Keys, descriptions, supporting information and illustrations are provided and made available online through eMonocot biodiversity informatics tools. Three nomenclatural acts are undertaken: two names are placed in synonymy and a new combination made.

18.
Virus Evol ; 1(1): vev002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27774276

RESUMO

Endogenous viral sequences are essentially 'fossil records' that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21-24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species.

19.
PhytoKeys ; (26): 101-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194672

RESUMO

A morphologically distinct element of the group of Dracaena species from Thailand and Burma with undifferentiated leaf sheaths, no leaf blade central costa, free tepals and free thickened filaments known as Chan nuu or Chan pha krai in Thai is shown to be a distinct species, Dracaena kaweesakii Wilkin & Suksathan based on habit, leaf base and margin, inflorescence axis indumentum and floral characters. It is described and illustrated. Ecological and conservation status assessment information are provided.

20.
Mol Phylogenet Evol ; 62(2): 624-39, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119064

RESUMO

For the 12 named taxa in the Gagea reticulata species complex, 609 cloned sequences of the low-copy nuclear gene malate synthase (MS) were used to investigate species relationships, using standard phylogenetic tools and network analyses. Three (homologous) copies of MS locus were present in each individual analyzed, and multiple alleles were present at most of these loci. Duplication of MS occurred after divergence of the G. reticulata complex. After comparisons, 591 sequence types (i.e. haplotypes) were identified, requiring implementation of novel statistical analyses to group haplotypes in a smaller number of groups/lineages to enable further study. Haplotype groups/lineages are not fully congruent with species limits with some widely present among species. MS genotypes at the root of the network are those of G. setifolia from central Iran, with more derived sequences in this species found in the west and northwest. Presence of ancestral genotypes in several other taxa may indicate either the retention of "ancestral" polymorphisms, more recent introgressive hybridization, or both. The relative DNA content of specimens was estimated with flow cytometry (FCM). The FCM analyses revealed two levels of DNA content (putatively "diploid" and "tetraploid"), but no correlation between number of MS gene copies and ploidy was found.


Assuntos
Evolução Biológica , Liliaceae/genética , Malato Sintase/genética , Filogenia , Ploidias , Alelos , Clonagem Molecular , Citometria de Fluxo , Dosagem de Genes , Duplicação Gênica , Loci Gênicos , Especiação Genética , Haplótipos , Hibridização Genética , Irã (Geográfico) , Liliaceae/classificação , Malato Sintase/classificação , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...